Publications with MicrobeMS: Difference between revisions

From MicrobeMS Wiki
Jump to navigation Jump to search
Line 15: Line 15:


== Relevant publications ==     
== Relevant publications ==     
&nbsp;<br><ul>
&nbsp;<br><ol>


<li>Lasch, P., M. Stämmler, and A. Schneider,<br>Version 4.1 (20230306) of the MALDI-ToF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). <br><i>Zenodo</i>, <b>2023</b>. March 6, 2023.<br>
<li>Lasch, P., M. Stämmler, and A. Schneider,<br>Version 4.1 (20230306) of the MALDI-ToF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). <br><i>Zenodo</i>, <b>2023</b>. March 6, 2023.<br>
Line 50: Line 50:
https://www.ncbi.nlm.nih.gov/pubmed/29086558.<br> &nbsp; <br></li>
https://www.ncbi.nlm.nih.gov/pubmed/29086558.<br> &nbsp; <br></li>


Meyer, B., A. Rabenstein, and J. Kuever, Mass Spectrometry: A Powerful Tool for the Identification of Wine-Related Bacteria and Yeasts, in Biology of Microorganisms on Grapes, in Must and in Wine, H. König, G. Unden, and J. Fröhlich, Editors. 2017, Springer International Publishing: Cham. p. 659-701.
<li>Meyer, B., A. Rabenstein, and J. Kuever,<br>Mass Spectrometry: A Powerful Tool for the Identification of Wine-Related Bacteria and Yeasts. <br><i>Biology of Microorganisms on Grapes, in Must and in Wine</i>, <b>2017</b>: p. 659-701.<br>
https://dx.doi.org/10.1007/978-3-319-60021-5_27</a>.<br> &nbsp; <br></li>


<li>Lasch, P., M. Stämmler, and A. Schneider,<br>Version 2 (20170523) of the MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). <br><i>Zenodo</i>, <b>2017</b>. May 23, 2017.<br>
<li>Lasch, P., M. Stämmler, and A. Schneider,<br>Version 2 (20170523) of the MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). <br><i>Zenodo</i>, <b>2017</b>. May 23, 2017.<br>
Line 97: Line 98:
https://www.ncbi.nlm.nih.gov/pubmed/18290666.<br> &nbsp; <br></li>
https://www.ncbi.nlm.nih.gov/pubmed/18290666.<br> &nbsp; <br></li>


</ul>
</ol>

Revision as of 10:57, 7 March 2024

Acknowledgements

MicrobeMS is a software project that has been developed by Peter Lasch at the Proteomics and Spectroscopy unit at the Robert Koch-Institute (Berlin/Germany). MicrobeMS is not open source but is provided for free, for testing or non-commercial use. Please send us references to any publications, presentations, or successful funding applications that make use of the MicrobeMS software, or MicrobeMS data sets (e-mail)).


We kindly ask users of MicrobeMS and MicrobeMS data sets to acknowledge us in their publications by citing the following publication:

Relevant publications

 

  1. Lasch, P., M. Stämmler, and A. Schneider,
    Version 4.1 (20230306) of the MALDI-ToF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI).
    Zenodo, 2023. March 6, 2023.
    https://doi.org/10.5281/zenodo.7702374.
     
  2. Ramadan, A.A.,
    Bacterial typing methods from past to present: A comprehensive overview.
    Gene Reports, 2022. 29: p. 101675.
    https://dx.doi.org/10.1016/j.genrep.2022.101675.
     
  3. Qiao, L.,
    MALDI-TOF MS for pathogenic bacteria analysis.
    International Journal of Mass Spectrometry, 2022. 482: p. 116935.
    https://dx.doi.org/10.1016/j.ijms.2022.116935.
     
  4. Blumenscheit, C., Y. Pfeifer, G. Werner, C. John, et al.,
    Unbiased Antimicrobial Resistance Detection from Clinical Bacterial Isolates Using Proteomics.
    Anal Chem, 2021. 93(44): p. 14599-14608.
    https://www.ncbi.nlm.nih.gov/pubmed/34697938.
     
  5. Lasch, P., A. Schneider, C. Blumenscheit, and J. Doellinger,
    Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS(1)) and in Silico Peptide Mass Libraries.
    Mol Cell Proteomics, 2020. 19(12): p. 2125-2139.
    https://www.ncbi.nlm.nih.gov/pubmed/32998977.
     
  6. Gittens, R.A., A. Almanza, K.L. Bennett, L.C. Mejia, et al.,
    Proteomic fingerprinting of Neotropical hard tick species (Acari: Ixodidae) using a self-curated mass spectra reference library.
    PLoS Negl Trop Dis, 2020. 14(10): p. e0008849.
    https://www.ncbi.nlm.nih.gov/pubmed/33108372.
     
  7. Baumeister, T.U.H., M. Vallet, F. Kaftan, L. Guillou, et al.,
    Identification to species level of live single microalgal cells from plankton samples with matrix-free laser/desorption ionization mass spectrometry.
    Metabolomics, 2020. 16(3): p. 28.
    https://www.ncbi.nlm.nih.gov/pubmed/32090296.
     
  8. Lasch, P., A. Schneider, C. Blumenscheit, and J. Doellinger,
    Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in silico Peptide Mass Data.
    bioRxiv, 2019.
    https://doi.dx.org/10.1101/870089 .
     
  9. Martina, P., M. Leguizamon, C.I. Prieto, S.A. Sousa, et al.,
    Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils.
    Int J Syst Evol Microbiol, 2018. 68(1): p. 14-20.
    https://www.ncbi.nlm.nih.gov/pubmed/29095137.
     
  10. Lasch, P., M. Stämmler, and A. Schneider,
    Version 3 (20181130) of the MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI).
    Zenodo, 2018. November 30, 2018.
    https://dx.doi.org/10.5281/zenodo.1880975.
     
  11. Yang, Y., Y. Lin, Z. Chen, T. Gong, et al.,
    Bacterial Whole Cell Typing by Mass Spectra Pattern Matching with Bootstrapping Assessment.
    Anal Chem, 2017. 89(22): p. 12556-12561.
    https://www.ncbi.nlm.nih.gov/pubmed/29086558.
     
  12. Meyer, B., A. Rabenstein, and J. Kuever,
    Mass Spectrometry: A Powerful Tool for the Identification of Wine-Related Bacteria and Yeasts.
    Biology of Microorganisms on Grapes, in Must and in Wine, 2017: p. 659-701.
    https://dx.doi.org/10.1007/978-3-319-60021-5_27</a>.
     
  13. Lasch, P., M. Stämmler, and A. Schneider,
    Version 2 (20170523) of the MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI).
    Zenodo, 2017. May 23, 2017.
    http://dx.doi.org/10.5281/zenodo.582602.
     
  14. Lasch, P., M. Stämmler, and A. Schneider,
    A MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI).
    Zenodo, 2016. Oct 27, 2017.
    http://dx.doi.org/10.5281/zenodo.163517.
     
  15. Lasch, P., D. Jacob, S.R. Klee, and G. Werner,
    Discriminatory Power of MALDI-TOF Mass Spectrometry for Phylogenetically Closely Related Microbial Strains.
    In: Applications of Mass Spectrometry in Microbiology, Plamen Demirev, Todd R. Sandrin (Eds.), 2016. Springer International Publishing: p. 203-234.
    http://dx.doi.org/10.1007/978-3-319-26070-9_8.
     
  16. Lasch, P., D. Jacob, R. Grunow, T. Schwecke, and J. Doellinger,
    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS for the identification of highly pathogenic bacteria.
    TrAC Trends in Analytical Chemistry, 2016. 85, Part B(Trends in CBRN Measurements for safety and security): p. 103–111.
    http://dx.doi.org/10.1016/j.trac.2016.04.013.
     
  17. Lasch, P., R. Grunow, K. Antonation, S.A. Weller, and D. Jacob,
    Inactivation Techniques for MALDI-TOF MS Analysis of Highly Pathogenic Bacteria - A Critical Review.
    TrAC Trends in Analytical Chemistry, 2016. 85, Part B(Trends in CBRN Measurements for safety and security): p. 112–119.
    http://dx.doi.org/10.1016/j.trac.2016.04.012.
     
  18. Dieckmann, R., J.A. Hammerl, H. Hahmann, A. Wicke, et al.,
    Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy.
    Faraday Discuss, 2016. 187: p. 353-75.
    http://www.ncbi.nlm.nih.gov/pubmed/27053001.
     
  19. Sousa, C., J. Botelho, F. Grosso, L. Silva, et al.,
    Unsuitability of MALDI-TOF MS to discriminate Acinetobacter baumannii clones under routine experimental conditions.
    Front Microbiol, 2015. 6: p. 481.
    http://www.ncbi.nlm.nih.gov/pubmed/26042113.
     
  20. Smith, E.M., Z.N. Willis, M. Blakeley, F. Lovatt, et al.,
    Bacterial species and their associations with acute and chronic mastitis in suckler ewes.
    J Dairy Sci, 2015. 98(10): p. 7025-33.
    https://www.ncbi.nlm.nih.gov/pubmed/26277313.
     
  21. Lasch, P., T. Wahab, S. Weil, B. Palyi, et al.,
    Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial.
    J Clin Microbiol, 2015. 53(8): p. 2632-40.
    https://www.ncbi.nlm.nih.gov/pubmed/26063856.
     
  22. Lasch, P., C. Fleige, M. Stammler, F. Layer, et al.,
    Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates.
    J Microbiol Methods, 2014. 100: p. 58-69.
    https://www.ncbi.nlm.nih.gov/pubmed/24614010.
     
  23. Lasch, P. and D. Naumann,
    MALDI-TOF Mass Spectrometry for the Rapid Identification of Highly Pathogenic Microorganisms.
    Proteomics, Glycomics and Antigenicity of BSL3 and BSL4 Agents, First Edition. Edited by Jiri Stulik, Rudolf Toman, Patrick Butaye, Robert G. Ulrich. 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA., 2011: p. 219-212.
    http://dx.doi.org/10.1002/9783527638192.ch17.
     
  24. Lasch, P., M. Drevinek, H. Nattermann, R. Grunow, et al.,
    Characterization of Yersinia using MALDI-TOF mass spectrometry and chemometrics.
    Anal Chem, 2010. 82(20): p. 8464-75.
    http://www.ncbi.nlm.nih.gov/pubmed/20866090.
     
  25. Minan, A., A. Bosch, P. Lasch, M. Stammler, et al.,
    Rapid identification of Burkholderia cepacia complex species including strains of the novel Taxon K, recovered from cystic fibrosis patients by intact cell MALDI-ToF mass spectrometry.
    Analyst, 2009. 134(6): p. 1138-48.
    https://www.ncbi.nlm.nih.gov/pubmed/19475140.
     
  26. Lasch, P., W. Beyer, H. Nattermann, M. Stammler, et al.,
    Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks.
    Appl Environ Microbiol, 2009. 75(22): p. 7229-42.
    http://www.ncbi.nlm.nih.gov/pubmed/19767470.
     
  27. Lasch, P., H. Nattermann, M. Erhard, M. Stammler, et al.,
    MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores.
    Anal Chem, 2008. 80(6): p. 2026-34.
    https://www.ncbi.nlm.nih.gov/pubmed/18290666.