Mass Spectrometry Databases: Difference between revisions

From MicrobeMS Wiki
Jump to navigation Jump to search
 
(18 intermediate revisions by the same user not shown)
Line 3: Line 3:
== Introduction ==
== Introduction ==


Library based MS approaches for microbial identification require labeled sets of microbial mass spectra. Starting with version 0.82, MicrobeMS can work with experimental MALDI-TOF or LC-MS;&sup1 mass spectra and their corresponding MS databases.
Library based MS approaches for microbial identification require labelled sets of microbial mass spectra. Beginning with version 0.82, MicrobeMS can be used with experimental MALDI-TOF or LC-MS&sup1; mass spectra and their corresponding ''in silico'' MS&sup1; databases.<br>
<br>
The RKI databases of microbial MALDI-TOF mass spectra contain mass spectra of highly pathogenic (Biosafety Level 3, BSL-3) bacteria such as ''Bacillus anthracis'', ''Yersinia pestis'', ''Burkholderia mallei'', ''Burkholderia pseudomallei,'' ''Brucella melitensis'' and ''Francisella tularensis'' as well as a selection of MALDI-TOF mass spectra of their close and distant relatives. The RKI mass spectra databases can be used as a reference for the diagnosis of BSL-3 bacteria using proprietary and free software packages for MALDI-TOF MS-based microbial identification. The databases are distributed as zip archives and contain the original mass spectra in their native data format (Bruker Daltonics). The MALDI-TOF MS databases are regularly updated.<br>
The RKI databases of microbial MALDI-TOF mass spectra contain mass spectra of highly pathogenic (biosafety level 3, BSL-3) bacteria such as ''Bacillus anthracis'', ''Yersinia pestis'', ''Burkholderia mallei'', ''Burkholderia pseudomallei'', ''Brucella melitensis'' and ''Francisella tularensis'' as well as a selection of MALDI-TOF mass spectra of their close and distant relatives. The RKI mass spectral databases can be used as a reference for the diagnosis of BSL-3 bacteria using proprietary and free software packages for MALDI-TOF MS-based microbial identification. The databases are distributed as zip archives and contain the original mass spectra in their native data format (Bruker Daltonics). The MALDI-TOF MS databases are updated on a regular basis.  
A description of the latest online MALDI-TOF MS database at ZENODO can be found in the following publication:<br>
<br>
The LC-MS;&sup1 database is an ''in silico'' database compiled from Uni-Prot Knowledgebase resources (Uni-Prot/KB Swissprot and TrEMBL), for details see below).


== MALDI-TOF MS databases ==
    Lasch, P., W. Beyer, A. Bosch, R. Borriss, et al.,
    A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria.
    <i>Sci Data</i>, <b>2025</b>. 12(1): p. 187.
    https://doi.org/10.1038/s41597-025-04504-z


The different versions of RKI biosafety level 3 (BSL-3) MALDI-TOF MS database can be downloaded from the following locations:
The LC-MS&sup1; database is an ''in silico'' database compiled from Uni-Prot Knowledgebase resources (Uni-Prot/KB Swissprot and TrEMBL), for details see below).


  1. [https://doi.org/10.5281/zenodo.7702375 Zenodo database version 4] (20230306):
== MALDI-ToF MS databases ==
    Lasch P, St&auml;mmler M & Schneider A, (2023). Version 4 (20230306) of the
    MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly
    Pathogenic Microorganisms from the Robert Koch-Institute (RKI).
    Zenodo. [https://doi.org/10.5281/zenodo.7702375 https://doi.org/10.5281/zenodo.7702375]
    Version Mar 06, 2023, creative commons CC BY-NC-SA 4.0 license


   2. [https://doi.org/10.5281/zenodo.1880975 Zenodo database version 3] (20181130):
The different versions of RKI biosafety level 3 (BSL-3) MALDI-ToF MS database can be downloaded from the following locations:
 
[[File:ZENODO-4.1.png|thumb|400px|Screenshot of the ZENODO MALDI-ToF MS database data v.4.1]]
 
[[File:ZENODO-1.0.png|thumb|400px|Screenshot of the ZENODO MALDI-ToF MS database data v.1.0]]
 
  1. [https://doi.org/10.5281/zenodo.14562231 ZENODO database version 4.2] (20230306):
    Lasch P, St&auml;mmler M & Schneider A, (2023). Version 4.2 (20230306) of the
    MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI).
    Zenodo. [https://doi.org/10.5281/zenodo.14562231 https://doi.org/10.5281/zenodo.14562231]
    Version Mar 06, '''2023''', creative commons CC BY-NC-SA 4.0 license
 
   2. [https://doi.org/10.5281/zenodo.1880975 ZENODO database version 3] (20181130):
     Lasch P, St&auml;mmler M & Schneider A, (2018). Version 3 (20181130) of the  
     Lasch P, St&auml;mmler M & Schneider A, (2018). Version 3 (20181130) of the  
     MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly
     MALDI-ToF Mass Spectrometry Database for Identification and Classification of
     Pathogenic Microorganisms from the Robert Koch-Institute (RKI).  
     Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI).  
     Zenodo. [https://doi.org/10.5281/zenodo.1880975 https://doi.org/10.5281/zenodo.1880975]
     Zenodo. [https://doi.org/10.5281/zenodo.1880975 https://doi.org/10.5281/zenodo.1880975]
     Version Nov 30, 2018, creative commons CC BY-NC-SA 4.0 license
     Version Nov 30, '''2018''', creative commons CC BY-NC-SA 4.0 license


   3. [https://www.microbe-ms.com/microbe-ms/refdata/3745_Zenodo_v1.pdf Zenodo database version 2] (20170523):
   3. [http://doi.org/10.5281/zenodo.582602 ZENODO database version 2] (20170523):
     Lasch P, St&auml;mmler M & Schneider , (2017). Version 2 (20170523) of the  
     Lasch P, St&auml;mmler M & Schneider , (2017). Version 2 (20170523) of the  
     MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly
     MALDI-ToF Mass Spectrometry Database for Identification and Classification of
     Pathogenic Microorganisms from the Robert Koch-Institute (RKI).  
     Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI).  
     Zenodo. [http://doi.org/10.5281/zenodo.582602 http://doi.org/10.5281/zenodo.582602]
     Zenodo. [http://doi.org/10.5281/zenodo.582602 http://doi.org/10.5281/zenodo.582602]
     Version May 23, 2017, creative commons CC BY-NC-SA 4.0 license
     Version May 23, '''2017''', creative commons CC BY-NC-SA 4.0 license


   4. [https://www.microbe-ms.com/microbe-ms/refdata/3280_Zenodo_v1.pdf Zenodo database version 1] (20161027):
   4. [http://doi.org/10.5281/zenodo.163517 ZENODO database version 1] (20161027):
     Lasch P, St&auml;mmler M & Schneider A, (2016). A MALDI-TOF Mass Spectrometry
     Lasch P, St&auml;mmler M & Schneider A, (2016).  
    Database for Identification and Classification of Highly Pathogenic Microorganisms from  
    A MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    the Robert Koch-Institute (RKI). Zenodo. [http://doi.org/10.5281/zenodo.163517 http://doi.org/10.5281/zenodo.163517]
    Highly Pathogenic from the Robert Koch-Institute (RKI).  
     Version October 27, 2016, creative commons CC BY-NC-SA 4.0 license
    Zenodo. [http://doi.org/10.5281/zenodo.163517 http://doi.org/10.5281/zenodo.163517]
     Version October 27, '''2016''', creative commons CC BY-NC-SA 4.0 license


== LC-MS&sup1; databases ==
== LC-MS&sup1; databases ==


The original concept of microbial identification by means of MALDI-TOF MS of cultivated microbial cells and spectral distance-based comparison with entries of a microorganism spectra library has been adapted for LC-MS&sup1; microbial identification, see this '''preprint''': Lasch P, Schneider A, Blumenscheit C and Doellinger J, [https://doi.org/10.1101/870089 ''Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;) and in silico Peptide Mass Data]'', bioRxiv (Dec 10, '''2018'''), doi:10.1101/870089.<br>
The original concept of microbial identification by means of MALDI-ToF MS of cultivated microbial cells and spectral distance-based comparison with entries of a microorganism spectra library has been adapted for LC-MS&sup1; microbial identification, for details see<br>
    '''Preprint:''' Lasch P, Schneider A, Blumenscheit C and Doellinger J.
    [https://doi.org/10.1101/870089 ''Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;) and in silico Peptide Mass Data''],
    ''bioRxiv'' (Dec 10, '''2018'''), doi:10.1101/870089.
 
    '''Peer reviewed paper''': Lasch, P., A. Schneider, C. Blumenscheit, and J. Doellinger.
    [https://www.ncbi.nlm.nih.gov/pubmed/32998977 ''Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;) and in silico Peptide Mass Libraries''].
    ''Mol Cell Proteomics'', '''2020'''. 19(12): p. 2125-2139. doi:10.1074/mcp.TIR120.002061


  1. Lasch P, Schneider A, Blumenscheit C, Doellinger J. (2019). In silico Database for  
    '''Supplementary data - LC-MS&sup1; database and program code''': Lasch P, Schneider A, Blumenscheit C, Doellinger J.
    Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;).  
    [https://doi.org/10.5281/zenodo.3573996 ''In silico Database for Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;)''].  
    Zenodo. [https://doi.org/10.5281/zenodo.3573996 https://doi.org/10.5281/zenodo.3573996]
    ZENODO. doi: 10.5281/zenodo.3573996
    Version December 13, 2019, creative commons CC BY-NC-SA 4.0 license
    Version December 13, 2019, creative commons CC BY-NC-SA 4.0 license  


Details can be found here: [[Identification Analysis by Means of LC-MS&sup1; and ''in silico'' Databases|Identification analysis by means of LC-MS&sup1; and ''in silico'' databases]]
    '''Tutorial''': [[Identification Analysis by Means of LC-MS&sup1; and ''in silico'' Databases|Identification analysis by means of LC-MS&sup1; and ''in silico'' databases]]

Latest revision as of 10:20, 27 March 2025


Introduction

Library based MS approaches for microbial identification require labelled sets of microbial mass spectra. Beginning with version 0.82, MicrobeMS can be used with experimental MALDI-TOF or LC-MS¹ mass spectra and their corresponding in silico MS¹ databases.
The RKI databases of microbial MALDI-TOF mass spectra contain mass spectra of highly pathogenic (Biosafety Level 3, BSL-3) bacteria such as Bacillus anthracis, Yersinia pestis, Burkholderia mallei, Burkholderia pseudomallei, Brucella melitensis and Francisella tularensis as well as a selection of MALDI-TOF mass spectra of their close and distant relatives. The RKI mass spectra databases can be used as a reference for the diagnosis of BSL-3 bacteria using proprietary and free software packages for MALDI-TOF MS-based microbial identification. The databases are distributed as zip archives and contain the original mass spectra in their native data format (Bruker Daltonics). The MALDI-TOF MS databases are regularly updated.
A description of the latest online MALDI-TOF MS database at ZENODO can be found in the following publication:

   Lasch, P., W. Beyer, A. Bosch, R. Borriss, et al.,
   A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria.
   Sci Data, 2025. 12(1): p. 187.
   https://doi.org/10.1038/s41597-025-04504-z

The LC-MS¹ database is an in silico database compiled from Uni-Prot Knowledgebase resources (Uni-Prot/KB Swissprot and TrEMBL), for details see below).

MALDI-ToF MS databases

The different versions of RKI biosafety level 3 (BSL-3) MALDI-ToF MS database can be downloaded from the following locations:

Screenshot of the ZENODO MALDI-ToF MS database data v.4.1
Screenshot of the ZENODO MALDI-ToF MS database data v.1.0
 1. ZENODO database version 4.2 (20230306):
    Lasch P, Stämmler M & Schneider A, (2023). Version 4.2 (20230306) of the 
    MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). 
    Zenodo. https://doi.org/10.5281/zenodo.14562231
    Version Mar 06, 2023, creative commons CC BY-NC-SA 4.0 license
 2. ZENODO database version 3 (20181130):
    Lasch P, Stämmler M & Schneider A, (2018). Version 3 (20181130) of the 
    MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). 
    Zenodo. https://doi.org/10.5281/zenodo.1880975
    Version Nov 30, 2018, creative commons CC BY-NC-SA 4.0 license
 3. ZENODO database version 2 (20170523):
    Lasch P, Stämmler M & Schneider , (2017). Version 2 (20170523) of the 
    MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). 
    Zenodo. http://doi.org/10.5281/zenodo.582602
    Version May 23, 2017, creative commons CC BY-NC-SA 4.0 license
 4. ZENODO database version 1 (20161027):
    Lasch P, Stämmler M & Schneider A, (2016). 
    A MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic from the Robert Koch-Institute (RKI). 
    Zenodo. http://doi.org/10.5281/zenodo.163517
    Version October 27, 2016, creative commons CC BY-NC-SA 4.0 license

LC-MS¹ databases

The original concept of microbial identification by means of MALDI-ToF MS of cultivated microbial cells and spectral distance-based comparison with entries of a microorganism spectra library has been adapted for LC-MS¹ microbial identification, for details see

   Preprint: Lasch P, Schneider A, Blumenscheit C and Doellinger J.
   Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹) and in silico Peptide Mass Data, 
   bioRxiv (Dec 10, 2018), doi:10.1101/870089.
   Peer reviewed paper: Lasch, P., A. Schneider, C. Blumenscheit, and J. Doellinger.
   Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹) and in silico Peptide Mass Libraries.
   Mol Cell Proteomics, 2020. 19(12): p. 2125-2139. doi:10.1074/mcp.TIR120.002061 
   Supplementary data - LC-MS¹ database and program code: Lasch P, Schneider A, Blumenscheit C, Doellinger J.
   In silico Database for Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹).    
   ZENODO. doi: 10.5281/zenodo.3573996
   Version December 13, 2019, creative commons CC BY-NC-SA 4.0 license 
   Tutorial: Identification analysis by means of LC-MS¹ and in silico databases