Mass Spectrometry Databases: Difference between revisions

From MicrobeMS Wiki
Jump to navigation Jump to search
 
(20 intermediate revisions by the same user not shown)
Line 3: Line 3:
== Introduction ==
== Introduction ==


Library-based MS approaches for microbial identification require labeled sets of microbial mass spectra. Starting with version 0.82 MicrobeMS can deal with experimental MALDI-TOF or LC-MS&sup1; mass spectra and the respective MS databases. <br>
Library based MS approaches for microbial identification require labelled sets of microbial mass spectra. Beginning with version 0.82, MicrobeMS can be used with experimental MALDI-TOF or LC-MS&sup1; mass spectra and their corresponding ''in silico'' MS&sup1; databases.<br>
The RKI databases of microbial MALDI-TOF mass spectra contain mass spectral entries from highly pathogenic (biosafety level 3, BSL-3) bacteria such as ''Bacillus anthracis'', ''Yersinia pestis'', ''Burkholderia mallei'', ''Burkholderia pseudomallei'' and ''Francisella tularensis'' as well as a selection of MALDI-TOF mass spectra from their close and more distant relatives. The RKI mass spectral databases can be used as a reference for the diagnostics of BSL-3 bacteria using proprietary and free software packages for MALDI-TOF MS-based microbial identification. The databases are distributed as zip archives and contain the original mass spectra in its native data format (Bruker Daltonics). MALDI-TOF MS Databases will be updated on a regular basis.<br>
The RKI databases of microbial MALDI-TOF mass spectra contain mass spectra of highly pathogenic (Biosafety Level 3, BSL-3) bacteria such as ''Bacillus anthracis'', ''Yersinia pestis'', ''Burkholderia mallei'', ''Burkholderia pseudomallei,'' ''Brucella melitensis'' and ''Francisella tularensis'' as well as a selection of MALDI-TOF mass spectra of their close and distant relatives. The RKI mass spectra databases can be used as a reference for the diagnosis of BSL-3 bacteria using proprietary and free software packages for MALDI-TOF MS-based microbial identification. The databases are distributed as zip archives and contain the original mass spectra in their native data format (Bruker Daltonics). The MALDI-TOF MS databases are regularly updated.<br>
The LC-MS&sup1; database is an ''in silico'' database which has been compiled from Uni-Prot Knowledgebase (Uni-Prot/KB Swissprot and TrEMBL) resources, for details see below).
A description of the latest online MALDI-TOF MS database at ZENODO can be found in the following publication:<br>


== MALDI-TOF MS databases ==
    Lasch, P., W. Beyer, A. Bosch, R. Borriss, et al.,
    A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria.
    <i>Sci Data</i>, <b>2025</b>. 12(1): p. 187.
    https://doi.org/10.1038/s41597-025-04504-z


The different versions of RKI biosafety level 3 (BSL-3) MALDI-TOF MS database can be downloaded from the following locations:
The LC-MS&sup1; database is an ''in silico'' database compiled from Uni-Prot Knowledgebase resources (Uni-Prot/KB Swissprot and TrEMBL), for details see below).


  1. [https://doi.org/10.5281/zenodo.7702375 Zenodo database version 4] (20230306):
== MALDI-ToF MS databases ==
    Lasch P, St&auml;mmler M & Schneider A, (2023). Version 4 (20230306) of the
    MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly
    Pathogenic Microorganisms from the Robert Koch-Institute (RKI).
    Zenodo. [https://doi.org/10.5281/zenodo.7702375 https://doi.org/10.5281/zenodo.7702375]
    Version Mar 06, 2023, creative commons CC BY-NC-SA 4.0 license


   2. [https://doi.org/10.5281/zenodo.1880975 Zenodo database version 3] (20181130):
The different versions of RKI biosafety level 3 (BSL-3) MALDI-ToF MS database can be downloaded from the following locations:
 
[[File:ZENODO-4.1.png|thumb|400px|Screenshot of the ZENODO MALDI-ToF MS database data v.4.1]]
 
[[File:ZENODO-1.0.png|thumb|400px|Screenshot of the ZENODO MALDI-ToF MS database data v.1.0]]
 
  1. [https://doi.org/10.5281/zenodo.14562231 ZENODO database version 4.2] (20230306):
    Lasch P, St&auml;mmler M & Schneider A, (2023). Version 4.2 (20230306) of the
    MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI).
    Zenodo. [https://doi.org/10.5281/zenodo.14562231 https://doi.org/10.5281/zenodo.14562231]
    Version Mar 06, '''2023''', creative commons CC BY-NC-SA 4.0 license
 
   2. [https://doi.org/10.5281/zenodo.1880975 ZENODO database version 3] (20181130):
     Lasch P, St&auml;mmler M & Schneider A, (2018). Version 3 (20181130) of the  
     Lasch P, St&auml;mmler M & Schneider A, (2018). Version 3 (20181130) of the  
     MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly
     MALDI-ToF Mass Spectrometry Database for Identification and Classification of
     Pathogenic Microorganisms from the Robert Koch-Institute (RKI).  
     Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI).  
     Zenodo. [https://doi.org/10.5281/zenodo.1880975 https://doi.org/10.5281/zenodo.1880975]
     Zenodo. [https://doi.org/10.5281/zenodo.1880975 https://doi.org/10.5281/zenodo.1880975]
     Version Nov 30, 2018, creative commons CC BY-NC-SA 4.0 license
     Version Nov 30, '''2018''', creative commons CC BY-NC-SA 4.0 license


   3. [https://www.microbe-ms.com/microbe-ms/refdata/3745_Zenodo_v1.pdf Zenodo database version 2] (20170523):
   3. [http://doi.org/10.5281/zenodo.582602 ZENODO database version 2] (20170523):
     Lasch P, St&auml;mmler M & Schneider , (2017). Version 2 (20170523) of the  
     Lasch P, St&auml;mmler M & Schneider , (2017). Version 2 (20170523) of the  
     MALDI-TOF Mass Spectrometry Database for Identification and Classification of Highly
     MALDI-ToF Mass Spectrometry Database for Identification and Classification of
     Pathogenic Microorganisms from the Robert Koch-Institute (RKI).  
     Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI).  
     Zenodo. [http://doi.org/10.5281/zenodo.582602 http://doi.org/10.5281/zenodo.582602]
     Zenodo. [http://doi.org/10.5281/zenodo.582602 http://doi.org/10.5281/zenodo.582602]
     Version May 23, 2017, creative commons CC BY-NC-SA 4.0 license
     Version May 23, '''2017''', creative commons CC BY-NC-SA 4.0 license


   4. [https://www.microbe-ms.com/microbe-ms/refdata/3280_Zenodo_v1.pdf Zenodo database version 1] (20161027):
   4. [http://doi.org/10.5281/zenodo.163517 ZENODO database version 1] (20161027):
     Lasch P, St&auml;mmler M & Schneider A, (2016). A MALDI-TOF Mass Spectrometry
     Lasch P, St&auml;mmler M & Schneider A, (2016).  
    Database for Identification and Classification of Highly Pathogenic Microorganisms from  
    A MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    the Robert Koch-Institute (RKI). Zenodo. [http://doi.org/10.5281/zenodo.163517 http://doi.org/10.5281/zenodo.163517]
    Highly Pathogenic from the Robert Koch-Institute (RKI).  
     Version October 27, 2016, creative commons CC BY-NC-SA 4.0 license
    Zenodo. [http://doi.org/10.5281/zenodo.163517 http://doi.org/10.5281/zenodo.163517]
     Version October 27, '''2016''', creative commons CC BY-NC-SA 4.0 license


== LC-MS&sup1; databases ==
== LC-MS&sup1; databases ==


The original concept of microbial identification by means of MALDI-TOF MS of cultivated microbial cells and spectral distance-based comparison with entries of a microorganism spectra library has been adapted for LC-MS&sup1; microbial identification, see this '''preprint''': Lasch P, Schneider A, Blumenscheit C and Doellinger J, [https://doi.org/10.1101/870089 ''Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;) and in silico Peptide Mass Data]'', bioRxiv (Dec 10, '''2018'''), doi:10.1101/870089.<br>
The original concept of microbial identification by means of MALDI-ToF MS of cultivated microbial cells and spectral distance-based comparison with entries of a microorganism spectra library has been adapted for LC-MS&sup1; microbial identification, for details see<br>
    '''Preprint:''' Lasch P, Schneider A, Blumenscheit C and Doellinger J.
    [https://doi.org/10.1101/870089 ''Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;) and in silico Peptide Mass Data''],
    ''bioRxiv'' (Dec 10, '''2018'''), doi:10.1101/870089.
 
    '''Peer reviewed paper''': Lasch, P., A. Schneider, C. Blumenscheit, and J. Doellinger.
    [https://www.ncbi.nlm.nih.gov/pubmed/32998977 ''Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;) and in silico Peptide Mass Libraries''].
    ''Mol Cell Proteomics'', '''2020'''. 19(12): p. 2125-2139. doi:10.1074/mcp.TIR120.002061


  1. Lasch P, Schneider A, Blumenscheit C, Doellinger J. (2019). In silico Database for  
    '''Supplementary data - LC-MS&sup1; database and program code''': Lasch P, Schneider A, Blumenscheit C, Doellinger J.
    Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;).  
    [https://doi.org/10.5281/zenodo.3573996 ''In silico Database for Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;)''].  
    Zenodo. [https://doi.org/10.5281/zenodo.3573996 https://doi.org/10.5281/zenodo.3573996]
    ZENODO. doi: 10.5281/zenodo.3573996
    Version December 13, 2019, creative commons CC BY-NC-SA 4.0 license
    Version December 13, 2019, creative commons CC BY-NC-SA 4.0 license  


Details can be found here: [[Identification Analysis by Means of LC-MS&sup1; and ''in silico'' Databases|Identification analysis by means of LC-MS&sup1; and ''in silico'' databases]]
    '''Tutorial''': [[Identification Analysis by Means of LC-MS&sup1; and ''in silico'' Databases|Identification analysis by means of LC-MS&sup1; and ''in silico'' databases]]

Latest revision as of 10:20, 27 March 2025


Introduction

Library based MS approaches for microbial identification require labelled sets of microbial mass spectra. Beginning with version 0.82, MicrobeMS can be used with experimental MALDI-TOF or LC-MS¹ mass spectra and their corresponding in silico MS¹ databases.
The RKI databases of microbial MALDI-TOF mass spectra contain mass spectra of highly pathogenic (Biosafety Level 3, BSL-3) bacteria such as Bacillus anthracis, Yersinia pestis, Burkholderia mallei, Burkholderia pseudomallei, Brucella melitensis and Francisella tularensis as well as a selection of MALDI-TOF mass spectra of their close and distant relatives. The RKI mass spectra databases can be used as a reference for the diagnosis of BSL-3 bacteria using proprietary and free software packages for MALDI-TOF MS-based microbial identification. The databases are distributed as zip archives and contain the original mass spectra in their native data format (Bruker Daltonics). The MALDI-TOF MS databases are regularly updated.
A description of the latest online MALDI-TOF MS database at ZENODO can be found in the following publication:

   Lasch, P., W. Beyer, A. Bosch, R. Borriss, et al.,
   A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria.
   Sci Data, 2025. 12(1): p. 187.
   https://doi.org/10.1038/s41597-025-04504-z

The LC-MS¹ database is an in silico database compiled from Uni-Prot Knowledgebase resources (Uni-Prot/KB Swissprot and TrEMBL), for details see below).

MALDI-ToF MS databases

The different versions of RKI biosafety level 3 (BSL-3) MALDI-ToF MS database can be downloaded from the following locations:

Screenshot of the ZENODO MALDI-ToF MS database data v.4.1
Screenshot of the ZENODO MALDI-ToF MS database data v.1.0
 1. ZENODO database version 4.2 (20230306):
    Lasch P, Stämmler M & Schneider A, (2023). Version 4.2 (20230306) of the 
    MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). 
    Zenodo. https://doi.org/10.5281/zenodo.14562231
    Version Mar 06, 2023, creative commons CC BY-NC-SA 4.0 license
 2. ZENODO database version 3 (20181130):
    Lasch P, Stämmler M & Schneider A, (2018). Version 3 (20181130) of the 
    MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). 
    Zenodo. https://doi.org/10.5281/zenodo.1880975
    Version Nov 30, 2018, creative commons CC BY-NC-SA 4.0 license
 3. ZENODO database version 2 (20170523):
    Lasch P, Stämmler M & Schneider , (2017). Version 2 (20170523) of the 
    MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). 
    Zenodo. http://doi.org/10.5281/zenodo.582602
    Version May 23, 2017, creative commons CC BY-NC-SA 4.0 license
 4. ZENODO database version 1 (20161027):
    Lasch P, Stämmler M & Schneider A, (2016). 
    A MALDI-ToF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic from the Robert Koch-Institute (RKI). 
    Zenodo. http://doi.org/10.5281/zenodo.163517
    Version October 27, 2016, creative commons CC BY-NC-SA 4.0 license

LC-MS¹ databases

The original concept of microbial identification by means of MALDI-ToF MS of cultivated microbial cells and spectral distance-based comparison with entries of a microorganism spectra library has been adapted for LC-MS¹ microbial identification, for details see

   Preprint: Lasch P, Schneider A, Blumenscheit C and Doellinger J.
   Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹) and in silico Peptide Mass Data, 
   bioRxiv (Dec 10, 2018), doi:10.1101/870089.
   Peer reviewed paper: Lasch, P., A. Schneider, C. Blumenscheit, and J. Doellinger.
   Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹) and in silico Peptide Mass Libraries.
   Mol Cell Proteomics, 2020. 19(12): p. 2125-2139. doi:10.1074/mcp.TIR120.002061 
   Supplementary data - LC-MS¹ database and program code: Lasch P, Schneider A, Blumenscheit C, Doellinger J.
   In silico Database for Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹).    
   ZENODO. doi: 10.5281/zenodo.3573996
   Version December 13, 2019, creative commons CC BY-NC-SA 4.0 license 
   Tutorial: Identification analysis by means of LC-MS¹ and in silico databases